Touch here for mobile friendly version

Saturday, May 2, 2015

New IEA Study: Least Cost Scenario has Nuclear as the World’s Largest Source of Electricity by 2050

 Cross-posted from Energy Trends Insider

An article in Grist about the same study had a different headline: “How solar can become the world’s largest source of electricity.” From the study:

The hi-Ren requires cumulative investments for power generation of USD 4.5 trillion more than in the 2DS, including notably PV but also wind power and STE (Solar Thermal Energy).

The study also notes that, in theory and given enough time, power systems that don’t burn fossil fuels should eventually pay for themselves with fuel cost savings (which is also a trait of nuclear). See Figure 5 below.

Figure 5 from IEA Study

Wind and Solar are just two pieces of a big puzzle

When talking climate change solutions, many pundits focus on wind and solar even though they are just two pieces of a very complicated climate change puzzle. What should be in their thought bubble is a pie chart of similar complexity to the one shown below from a study commissioned by the WWF (World Wildlife Fund)  five years ago:

WWF Vision to Mitigate Climate Change


From the press release about the IEA (International Energy Agency) study:

The sun could be the world’s largest source of electricity by 2050, ahead of fossil fuels, wind, hydro and nuclear, according to a pair of reports issued today by the International Energy Agency (IEA). The two IEA technology roadmaps show how solar photovoltaic (PV) systems could generate up to 16% of the world’s electricity by 2050 while solar thermal electricity (STE) from concentrating solar power (CSP) plants could provide an additional 11%.

To put that into perspective, if 16% + 11% = 27% of global electricity generation came from solar today it would reduce global greenhouse gases maybe 7% or so. The other 93% would still be there. See the pie chart below:

Impact on Emissions if Solar = 27% of Electricity Generation Today


The study, like all studies of its kind, is a giant hypothesis made out of a collection of hypotheses. For example, although liquifying  the CO2 from combusted natural gas and coal and then pumping it under extreme pressure into nearby underground caverns (CCS — Carbon Capture and Sequestration)  has been done,  it is only a hypothesis that it can scale to any meaningful level. How far wind and solar can scale is also largely unknown. We all know that very few hypotheses come to fruition.

The IEA is trying to emulate on a global scale the recent NREL study that tried to show how the United States might achieve 80% renewables for electricity generation by 2050. Read The Exaggerated Promise of Renewable Energy. Similar studies have been done by the WWF (World Wildlife Fund), the EIA (Energy Information Association), NREL (National Renewable Energy Lab), Greenpeace, and on and on. If these organizations really could predict the future (which is an absurd thought if you think about it), they wouldn’t all come up with such divergent scenarios. Because the WWF isn’t a big fan of hydro power and the destruction of forests for biofuels and biomass, their 2050 scenario bears little resemblance to that of the new IEA study.

Disparate Study Results


Their analysis uses “cost optimisation to identify least-cost mixes of energy technologies and fuels.” But here’s the thing, because their answers are the result of educated guesses about cost, those answers are, by definition, also little more than educated guesses. If their cost predictions three and a half decades into the future are wrong (and they will be), the resulting energy road maps are also going to be wrong. Again, from the Breakthrough Institute:


Nuclear/Solar Cost Comparison

All energy production schemes have their upsides and their downsides. However, that does not in any way suggest that all energy schemes are equally environmentally destructive (per unit power provided).

The Real Cost of Solar and Wind: Storage, Dams, Biomass

One of the major costs of scaling solar and wind is what it will take to back them up. The study acknowledges that wind and solar will need large amounts of backup power, which today is supplied mostly by natural gas that can be turned on and off as the wind and sun fluctuate. Just as the NREL study did, the IEA study assumes that most of this gas will be replaced with a massive build up of hydroelectric dams and pumped hydro storage, along with a roughly ten-fold expansion of the burning of biomass.

 
Read Pumped hydro storage will eliminate wind and solar intermittency …really? From a link in that article:

Pumped storage plants, however, consumed 29 billion kilowatthours (kWh) of electricity in 2011 to refill their storage reservoirs, resulting in a net generation loss of 6 billion kWh.

Never mind the cost, here is an interesting paper titled The Catch-22 of Energy Storage arguing that because pumped hydro storage is so energy intensive, the more of it you have, the less total energy humanity has at its disposal, which is why it can’t be an answer to the intermittency of wind and solar.

Dams

We will have to roughly double the amount of hydro electric power that exists today (and I don’t know if they accounted for all of the dams of today that will be silted in by 2050, evidence that hydro isn’t really renewable).



Brace yourself for the damming of pretty much every major tributary in the Amazon and Africa and the attendant loss of their river ecosystems. You may have heard about the drought in Brazil (although I’m not claiming  that it is a direct result of global warming). The media loves to focus on slowly rising water levels but the real hammer of climate change will be shifting rainfall patterns. How will that affect the IEA road map? From Power Magazine:

    …lack of rainfall is hitting the power industry especially hard in parts of Brazil. But with reservoir levels at historic lows in some places, more electricity has been required from fossil-fueled power plants …the lack of water has contributed to electricity blackouts in many parts of the country.
The lack of rainfall has limited hydroelectric output but offers a big opportunity for other power generators. The EIA says generation from natural gas and other fossil fuels was at record high levels  …Petrobras, Brazil’s state-controlled oil and gas firm and the sole importer of LNG to the country, imported a record 2.833 million tons of LNG over the first eight months of 2014.

Brazil’s electric power mix:

    1.1% Wind
    2.4% Nuclear
    2.6% Coal and Coal Products
    4.4% Oil Products
    7.6% Biomass
    11.3% Natural Gas
    70.6% Hydroelectric

Biomass

Although I take anything said by the FOE or Greenpeace with a large grain of salt, consider reading this summary called Dirtier than coal? by Friends of the Earth and Greenpeace, which actually used information from a study published in the journal Science. From that summary:


Impact of Using Biomass for Energy

The droughts plaguing the Amazon are likely exacerbated by deforestation, which has increased by roughly 28% in the past few years.

Solar Thermal Power Plants

A very big part of the plan is for massive solar power stations that concentrate solar energy with mirrors to make steam to power turbines. The only advantage this type of solar power has over rooftop solar is that it can also be used to melt salt to be stored to provide heat to run those turbines when the sun isn’t shining. How’s that working out? This article titled Mainstream Media Slams Ivanpah, California’s Latest Solar Project does a nice summary.

From the New York Times on the Ivanpah solar thermal power plant:

The plant, which took almost four years and thousands of workers assembling millions of parts to complete, officially opened on Thursday, the first electric generator of its kind.

It could also be the last.

The above Times article was all about financial problems. It made no mention of wildlife issues. Also note that this project does not store any energy (too costly). It is instead, backed up with natural gas. This project also not only usurped prime threatened desert tortoise habitat, it’s doing a number on anything that flies. Birds ignite into flames and fall to earth in front of a smoking contrail. Employees at Ivanpah call them “streamers.” According to  the Atlantic, while visiting Ivanpah, the Fish and Wildlife Service’s Office of Law Enforcement witnessed birds entering the flux to become streamers and saw streamers every few minutes during the visit.

If  images of oil covered birds from the occasional oil spill can be used to rally public support for regulations to minimize those spills, then it’s fair game to use images of incinerated and decapitated birds to do the same for solar and wind.

Streamer
 This IEA study only covers electricity generation, which is responsible for less than half of the energy we consume and about  a quarter of global GHG emissions. My main point in this article isn’t so much that these scenarios are unlikely to come to fruition, my main point is that they probably should not be allowed to come to fruition. Real environmentalists should be appalled. We have to find more elegant solutions or our grandchildren will never know the natural world.


 The Breakthrough Institute graphics used above came from a recent article called Renewables and Nuclear at a Glance.  It’s a series of easy to understand graphics that takes only a minute or so to scroll through. Consider also reading this short piece: When Renewables Destroy Nature.

Luckily, the future isn’t predictable. The meme that spread around the world that maybe it’s a good idea to have fewer children halted the increasing population growth rate in its tracks. World population continues to increase but its rate of increase has been dropping toward zero for many decades now.
Today a meme is spreading that maybe it’s time to replace combustion as a source of energy. However, grossly exaggerating the theoretical potential of renewables while underrating the proven capacity of nuclear is not likely to lead to a solution.

Credit puzzle graphic: David Goehring via Flickr Creative Commons.

No comments:

Post a Comment

Comments that are not respectful of other participants will be deleted, so don't waste your time on a post that will be canned. Feel free to post links to pertinent sources and to your own website as part of your comment. Spam disguised as a comment will also be deleted as will comments that consist primarily of copied and pasted words from other authors (plagiarized content).