Touch here for mobile friendly version

Saturday, May 2, 2015

Turkey Point Power Station and its Ecosystem


Photo Credit Nina Finley

Cross-posted from Energy Trends Insider

I recently took a trip to Florida, which is home to both the American alligator and the American crocodile.  Thanks to effective laws and effective enforcement of those laws, the alligator population has rebounded into the millions. They’re all over the place. In comparison, the crocodile population has rebounded from an estimated low of about two or three hundred to about 1,500. Crocodiles were never as common in North America as the cold-adapted alligator. The opposite is true in South America where there are no alligators. Click here to see a video I took several years ago of crocodiles in Costa Rica.

Part of the credit for the crocodile comeback can be given to the unique system for cooling at the Turkey Point power station (located in southern Florida) which uses well over 150 miles of winding cooling canals that look from a Google Earth perspective  like a giant green radiator.

Turkey Point Cooling Canals
 For reasons not entirely understood (and wholly unanticipated) crocodiles began seeking these canals to lay their eggs. Certainly, by laying their eggs inside the security perimeter of a power station the crocodiles don’t have to worry about poachers, or worse yet, real estate developers.
According to Florida Power and Light (FPL) roughly 90 percent of  their Turkey Point property is managed as habitat for endangered and threatened species (12 endangered and nine threatened). They have an on-staff crocodilian expert who monitors nesting sites and tags hatchlings before moving them to more suitable habitat.

Provision of inadvertent benefit to wildlife by thermal power plants is not unique to Turkey Point. The Big Bend power station in Apollo Beach has a manatee viewing center where visitors can see hundreds of manatees basking in the warm water discharge area during cold weather. According to the Defenders of Wildlife Blog, “Loss of warm-water habitat is a serious long-term threat to manatees.” These artificial warm springs that up to 60% of manatees now rely on for survival during cold spells are being used in place of the natural ones that have been lost to development.



Manatees Photo credit FWC via Flickr Creative Commons

Click here to see a very short video I took of a manatee surfacing for air.

The Turkey Point  power station was created at the beginning of the environmental movement, long before climate change was widely recognized as an issue. Protests prevented FPL from using Biscayne Bay as a source of cooling water. The cooling canals were built thanks to environmentalists wanting to protect the bay. However, the canals destroyed a lot of natural habitat and because their salt content has been climbing, they may be contributing to an underground  salt water plume threatening drinking water supplies.

The cheapest way to fix the salinity problem (as opposed to simply lining the canals)  is to freshen the canals up with some stored storm water drainage, but water managers are hoping to use that water to increase flow in the everglades and on and on. Had FPL been allowed to use the bay for cooling, would the result have simply been another artificial hot spring for manatees? You can’t rewind the experiment to find out.

Florida is a hot humid place. Cooling a thermal power plant can be challenging. Few people would choose to live in Florida without air conditioning and air conditioning uses a lot of electricity. In cooler parts of the world a thermal power station can use a modest sized pond for its cooling purposes.

I could see part of  the Turkey Point power station from across the bay. Click here to see a short video of what I saw. While researching this article I was surprised to find that it is ubiquitously referred to as the Turkey Point “Nuclear” power station, when in reality, most of its electricity is generated by fossil fuels.

A brief history of the Turkey Point power station:

  • 1968: Construction completed on two steam turbines fueled with oil/natural gas (Units 1 and 2) and their associated black start diesel generators.
  • 1973:  Two nuclear reactors were added, Units 3 and 4, along with 150 miles of cooling canals.
  • 2002: Operating licenses were extended from forty to sixty years for Units 3 and 4.
  • 2007:  Four combined cycle gas turbines were added along with a 24 cell cooling tower, Unit 5.
  • 2013: Units 3 and 4 were uprated to provide an additional 250 MWs.
  • 2014: Florida legislature approves construction of two more nuclear reactors and associated power equipment, Units 6 and 7.
  • 2014: NRC grants request to increase cooling canal maximum operating temperatures from 100 to 104 degrees.

Turkey Point Power Station

In the Google Earth screenshot above of the power station you can see that cooling for the four new gas turbines was accomplished by 24 giant fans in cooling towers which reduce the need for cooling in the canal.

To cool the steam produced by two more reactors FPL has an agreement with the Miami-Dade Water and Sewer Department to use treated municipal waste water. The treatment plant is located about 9 miles north of the power station. Normally, this waste water is simply dumped into the same bay that environmentalists were trying to protect from warm water from the power station in the early seventies. This source of cooling water will be backed up with a system of radial collector wells under the bay in case the municipal water should become temporarily unavailable. You can get more details here.

Most thermal power stations in Florida are located near bodies of water that are large enough to absorb their waste heat without problems. That was the original plan at Turkey Point as well.

When you consider the complexity and inefficiency of boiling water to make electricity, one can see the appeal of adding more solar panels to the grid to help reduce the number of thermal power stations in Florida. Not that they would be problem free. A stand-alone solar power station would usurp a huge amount of land per unit energy produced compared to a thermal plant. Rooftop solar would eliminate that problem but is still much more expensive than thermal power plants, as inefficient and complex as they are. I used the latest solar cost estimator released by the National Renewable Energy Lab to calculate the cost of rooftop solar for an average Florida home (sans subsidies) and found that at this point in time it would cost around $30 thousand more over the life of the panels than simply buying electricity off the grid.

In addition, large amounts of solar would require large amounts of investment in the grid to maximize the use of solar when the sun shines and take its place when the sun doesn’t. Solar can’t replace the thermal power plants, but it has the potential to help reduce overall fossil fuel consumption and its attendant environmental problems. Below is a shot I took of the solar hot water panels in the Everglades National park.



Below are a few pictures of some of the wildlife encountered on my trip.




Photo Credit Nina Finley

 




No comments:

Post a Comment

Comments that are not respectful of other participants will be deleted, so don't waste your time on a post that will be canned. Feel free to post links to pertinent sources and to your own website as part of your comment. Spam disguised as a comment will also be deleted as will comments that consist primarily of copied and pasted words from other authors (plagiarized content).