Touch here for mobile friendly version

Showing posts with label coal vs. nuclear. Show all posts
Showing posts with label coal vs. nuclear. Show all posts

Saturday, October 8, 2011

Electrification Nation--Why Natural Gas Won't Save Our A**



Right click on the above figure to open it in a new window. Note the modified text on the left.

The DOE report of their first Quadrennial Technology Review strongly suggests, at least to me, that we must greatly increase electrification of transport, manufacturing, and even home heating, using the lowest carbon sources available, which would be nuclear and renewables. In other words, we must generate much more electricity and all of it must come from nuclear and renewables.




By replacing all coal in the United States with natural gas (more than doubling the amount of natural gas burned today) we would reduce our total GHG emissions a mere 15%. In comparison, if we replace coal and natural gas with 30% renewables (which is as far as wind and solar photovoltaic can scale because they are so intermittent) and 70% Gen III reactors of the small modular variety, we would reduce GHG emissions about 57%.

Once electricity generation has been decoupled from GHG production, it can be used to power compressors to turn natural gas into liquefied natural gas (LNG) without incurring an additional carbon penalty associated with LNG today that uses coal or natural gas sourced electricity to compress the gas. This lower carbon LNG can in turn be used to replace petroleum in many applications. By replacing petroleum for transport with a combination of plug-in hybrids, electric vehicles, LNG vehicles, we would be approaching the needed 80% reduction in GHG releases. Some petroleum could still be used for things like aircraft where there simply is no other less environmentally destructive alternative fuel to be used.

What is a Gen III reactor? From Wikipedia:

A generation III reactor is a development of any of the generation II nuclear reactor designs incorporating evolutionary improvements in design developed during the lifetime of the generation II reactor designs. These include improved fuel technology, superior thermal efficiency, passive safety systems and standardized design for reduced maintenance and capital costs.


What is a passive safety system? From Wikipedia:

The mPower is designed so as to make loss of coolant accidents impossible due to the Integral Reactor Vessel which contains the entire primary coolant loop within the reactor pressure vessel. If secondary cooling is lost, creating an effective loss of standard heat removal, there are water supplies located above and within the containment that can be used to cool the IRV with gravity driven-cooling. Further advanced means of heat removal can be used in the event that these systems are exhausted, such as by flooding the containment and establishing natural circulation.


What is a small modular reactor? From the DOE report:



And from Wikipedia:

Small modular reactors (SMRs) are part of a new generation of nuclear power plants being designed all over the world. The objective of these SMRs is to provide a flexible, cost-effective energy alternative.

Small reactors are defined by the International Atomic Energy Agency as those with an electricity output of less than 300 MWe, although general opinion is that anything with an output of less than 500 MWe counts as a small reactor.

Modular reactors are manufactured at a plant and brought to the site fully constructed. They allow for less on-site construction, increased containment efficiency, and heightened nuclear materials security.

Large nuclear power plants are generally rather inflexible in their power generation capabilities. SMRs have to have a load-following design so that when electricity demands are low they will produce a lower amount of electricity.


Why small modular reactors? Again from the DOE report:

The policy and market risks make it easier to finance assets with low capital and uncertain operating expenses (e.g., natural gas generators) than those with high capital and low operating expenses (e.g., renewable and nuclear power plants).

Because planning, regulatory, physical, security, and capital risks increase with scale, investors and policy makers have preferred modular deployment of new technologies at the scale of a few hundred megawatts, ... Smaller-scale technologies also enable consumer deployment of generating technologies—a trend in the residential,commercial, and industrial sectors. Generators closer to the load also provide more reliable service and lower transmission costs, although there can be local resistance to new deployment. generating capacity distributed over many locations can also increase reliability and energy security.

Translation: SMRs are a lot cheaper than conventional nuclear plants. The market is hesitant to spend so much up front on large conventional nuclear power just as I am hesitant to spend $60 grand on solar panels although I know they will pay for themselves over time.

And some more on this subject from the DOE:

As other technologies mature and attempt to enter the electricity market, easy integration into the established system is a competitive advantage. Generators that run on fuel [natural gas and small modular nuclear] can be sited more flexibly than those that directly capture a diffuse, renewable resource. In particular, they can be located near load centers and existing transmission infrastructure, lowering barriers to deployment.

...of 442 civilian nuclear power reactors and an additional 65 reactors currently in some stage of construction, civilian nuclear energy sits at the nexus of energy, climate, and security.


Let me take a moment here to point out some problems. If the United States were to accomplish the above, we would have a glut of oil and natural gas. Just as we export coal and corn ethanol today, and import Canadian tar sand oil, we would likely export our oil, coal, and natural gas. There would be a lot of money made but no progress on global warming if countries like China burn all that we do not.

The asinine idea that our military should go green and use biofuels to kill people would also go away because they would have all the oil they need to fight any just or unjust wars with.

Following are some more charts (modified by me) from the report.



Most of the rest of our emissions essentially come from liquid fuel for transport--petroleum. So ...what options does the DOE think we have for liquid fuel for transport?



According to the report, after two decades of government subsidies and five years of mandated use, ethanol replaces only 7% of gasoline, usurps 40% of our corn crop and would require the most massive build out of infrastructure (fuel pumps, pipe lines, tanker trucks/trains), of all transport energy options. Oh, and it exacerbates increasing food prices and land use change around the world, does not reduce the impacts of price or price volatility on the consumer ...and as you can see above, does next to nothing (if anything) to reduce GHG emissions (because most of the energy in a gallon of ethanol comes from natural gas).

According to the report, for mass transit (urban buses, passenger trains) and light duty transport (cars and small trucks), our best option is electrification and efficiency--not replacing petroleum with biofuels. You certainly don't want to use natural gas to make electricity for transport because you would generate about the same amount of GHG as burning petroleum because about 40% of the energy in the natural gas is lost at the generator and power lines and another 30% from the electric motor inefficiency.

We really don't have any non-petroleum options for airline travel. And although this DOE report claims we don't have any options for long haul vehicles like semi-tractor rigs and ships, I don't see why truck stops could not provide natural gas and the rigs could certainly carry very large tanks. I also don't see why ships can't run on natural gas as well because they certainly can carry tanks of methane big enough to get across an ocean.

Follow future and review past posts via Twitter

Click here--to see a list of articles and to subscribe to future posts or subscribe by email

Enter your email address:

Delivered by FeedBurner

Saturday, May 28, 2011

Dirty, Baseload, Centralized, Renewable Energy



Update: This is an older article that I have slightly edited. It wasn't my intent to republish it, so my apologies to anyone who got an alert who read this when it was originally written.

Below I Fisk an article titled How to get to a fully renewable power system. It's largely an anti-nuclear article in sheep's clothing.

Anti-nuclear environmentalists are becoming as much of a stumbling block to low carbon energy as the head-in-the-hole conservatives. They were taught as impressionable adolescents that nuclear energy was evil and they just can't unlearn it. As a father of two, it pisses me off frustrates me that attempts to protect our children from the ravages of a warmed world are being hampered by adolescent imprinting--on two fronts. Predictably I suppose, tribe identity (and the defense of the markers that define your tribe) tends to trump rational thought.

Thanks to the Internet, the old anti-nuclear arguments are in a shambles. It's interesting to watch new ones trying to evolve. The very latest is to claim that the world's power grids don't need baseload power ...plants (or something fuzzy like that).

Admittedly, Dave does a pretty thorough job of laying out what it would take to get a fully renewable power system. First, you have to temporarily increase the number of natural gas power plants (and hope those who invested in them will later give them up peacefully and in a timely manner).

Next, you have to build ...

...the crap out of renewables. The more renewable sources there are on the grid, the wider the geographic area they cover, the more every region has maximized its local, distributed resources, the steadier the total supply is. That's especially true if you ramp up hydro, geothermal, and biomass, i.e., non-intermittent renewables.

...you can shrink the peaks (nerdspeak: "peak leveling") by moving demand around (nerdspeak: "demand response"), either by persuading people to spread their consumption out by charging more during peak hours (nerdspeak: "variable pricing"), or by building appliances that can cut back automatically.

Second -- another species of peak leveling -- there's energy storage. Stored energy is dispatchable: you can send it where you need it when you need it. "Pumpspeicher" on the chart above is pumped storage, which today is one of the few cost-effective, large-scale storage technologies in common use, though others are coming online. There are also batteries, ultracapacitors, compressed air, flywheels, fuel cells, and the distributed storage ...


Oh, and one more thing. You have to get rid of "nukes." As a thought exercise about how to get to all renewable energy it makes sense you would exclude nuclear power simply because it is not renewable (although natural gas isn't renewable either). He dropped the ball (and raised my ire) when he suggested that we should drop nuclear because it is centralized and provides baseload.

But there is nothing inherently wrong with centralized baseload power plants.

So, summing it all up, what he's actually saying in a very roundabout way is that we must stop using nuclear because it will reduce how much renewable energy we will need. If we really knew for sure that we could replace all electricity production with renewables I'd have no quibble. But we don't know that, not by a long shot.

He wants us to dump a known economically feasible zero carbon energy source and bet our children's futures on an untested hypothesis (of unknown cost) that we can keep the lights on coast to coast, rain or shine, day and night by stringing together a Rube Goldberg collection of variable, intermittent and/or non-dispatchable renewable sources without any help from "nukes."

This argument might carry more weight if the overarching priority is to use only renewable energy. But that isn't the overarching priority. Eliminating the burning of fossil fuels is the overarching priority (because they are the main source of green house gases). Renewable may be the ultimate goal but it is not the more immediate one.

The lion's share of renewable energy is either centralized (wind and solar farms, hydro, etc) and/or baseload (hydroelectric, geothermal, biogas, biomass, solar thermal with storage). For example, burning biomass in place of or along with coal is centralized baseload power (that may be partially renewable, but is probably not low carbon and certainly is not clean).

Read the following to see how convoluted the reasoning can get.

So you've got your baseload plants and your peaker plants

Wrong.

From the Wikipedia article on load following:

“…A load following power plant is a power plant that adjusts its power output as demand for electricity fluctuates throughout the day. Load following plants are typically in-between base load and peaking power plants in efficiency, speed of startup and shutdown, construction cost, cost of electricity and capacity factor…”


There are three basic power generation modes: baseload (full throttle all the time), load following (variable output), and peaking (off or on—binary). Some gas fired power plants may turn off some of their turbines instead of all of them to provide a measure of load following as well (throttle back).

One out of three of the main modes of power generation is missing from Dave’s plan to get to “a fully renewable power system.” What are the odds of getting an accurate answer when a third of your input data is missing?

“…Once they're built [“baseload” power plants] they're pretty cheap to operate and you can run them around the clock…”


He got that right.

“…The idea, in a nutshell, is to reduce and eventually eliminate the need for baseload power plants (the big polluters) …”


Wrong.

The goal is to eliminate coal, period. Unlike coal, nuclear baseload power produces no emissions, levels no mountain tops, has no railroad tracks jammed with thousands of carloads of coal, and fills in no river valleys with mine tailings (i.e., coal and nuclear share almost nothing in common other than economics).

Most renewable energy produced today is coming from centralized baseload power sources (hydroelectric, geothermal, biogas, biomass, solar thermal with storage). And although wind and solar photovoltaic farms are not baseload, they most certainly are centralized power plants. Confused? I don’t blame you.

Dave states that we must “eliminate the need for baseload power plants.” However, he acknowledges the need for baseload power when he points out in a chart that “…renewables are providing, in effect, baseload power.”

He appears to be saying that we must eliminate power sources that run continually (baseload) unless they are renewable (hydroelectric, geothermal, biogas, biomass, solar thermal with storage) or made to act like a single baseload power plant by stringing together a conglomeration of intermittent sources with a hypothetical, untested, super smart grid of unknown configuration and cost (HVDC, superconducting, conventional high voltage wire).

There is a propensity for us enviro types to favor distributed energy even though most renewable energy comes from centralized power plants. We don't like the term "power plant" because they are run by the man. But like it or not the man is in charge of solar and wind farms as well. And even though the one main advantage of distributed is that you don't need a gargantuan coast to coast grid, we acknowledge the need for some kind of new coast to coast grid to tie it all together. Contradictory and schizophrenic are two words that come to mind.

In the comment field of the article I'm critiquing you will find those who have not only confused baseload with centralized power but have also been convinced that both are bad, even though wind and solar farms are both examples of centralized power and to ice the cake, both can (as Dave points out in his chart) serve as baseload if enough can be strung together with tens of thousands of miles of power lines.

“…However, they're not well suited to ramping up and down in response to short-term fluctuations. (It takes days to turn a nuke plant off and back on.)…”


Here he suggests to readers that a nuclear plant can only alter power output (“ramping up and down”) by turning off and on. Imagine if cars had only two modes like a rocket ship—full throttle and off.

Nuclear plants can’t be used as peaking power plants like the gas fired variety that often actually do turn on and off. However, some nuclear designs (like those in France) can ramp up and down like your car engine does and are often used for load following.

Although it tends to be more economical to design nuclear power plants for baseload, some designs are capable of load following as well and if there is enough economic incentive to do so (to support renewables for example) they can be designed specifically for that purpose.

“…They [wind and solar] are variable and intermittent, with low capacity factors, so they can't satisfy baseload demand. But the wind and sun are not dispatchable, so they can't reliably satisfy peak demand either…”


The above sentences are accurate once you remove his suggestion that this is false conventional wisdom and that the problem is with the peg board filled with round holes, not the square pegs (wind and solar) you are trying to jam into it.

“…When I was in Germany recently, though, the reaction among folks I talked to was, 'Yes, that is a problem. We are going to solve it!'..."


You would of course get the same reactions here as well depending on how selective you are about who you talk to. There are lots of ways to solve the problem, like burn fossil fuel gas in peaker plants and nuclear in baseload and load following plants to maximize how much wind and solar you can effectively use. And yes, you could also try to string together a gargantuan super grid from sea to shining sea but that isn’t likely to be the highest probability for success.

In a nutshell, Dave is biasing the data to get the result he wants, which is that we don’t need “nukes” as he calls nuclear power plants (a term originally used to denote nuclear weapons, which have nothing to do with nuclear generated electricity).

The conflation of thermonuclear devices with peaceful electricity generation is as manipulative as it is disingenuous. I try to point this out every time I see it no matter how subtle the conflation.

Just last night I watched the documentary Trinity and Beyond (narrated by former Starship captain, William Shatner). It was unsettling to watch the detonation of one thermonuclear weapon after another. The sight of the Russian 57 megaton thermonuclear device going off raised the hair on the back of my neck.

The United States alone detonated over 330 nuclear weapons (submerged in the ocean, buried underground, shot from canons, launched into space, you name it). The realization that all of the nuclear powers were repeatedly releasing all of that radiation into the environment is sobering but at the same time it puts into perspective just how out of perspective the public’s concerns are over radiation from nuclear power plants.

“…In Germany, on the other hand, they get it. That's why they are eschewing nukes and going all out on renewables. They are leading. Remember leading? Seems like America used to do more of it…”


Ironically, Germany also features very prominently in the film Trinity and Beyond. Nuclear weapons were developed as a result of Germany leading the world into the worst conflagration in all of human history.

Maybe this “eschewing of nukes” is a form of subconscious societal guilt relief for the sins of their fathers. Time will tell how successful they will be. Odds are good that they will end up burning more fossil fuels as well as importing more energy (which is actually fine as long as it is low carbon energy). Certainly, George Monbiot sees their solar program as a form of robbing the poor to subsidize the rich.

I also find it ironic that their neighbor, France, gets almost 80 percent of their electricity from nuclear. Such a stark contrast this will be.

Update 5/29/2011: From an article at the Energy Collective:

...none of these scenarios discussed in the previous section would result in any net reduction in carbon emissions, as each would simply see renewables and/or efficiency displace Germany's existing nuclear plants, a zero-carbon energy source, rather than coal or natural gas-fired power plants.

...as Germany contemplates simultaneously phasing out it's nuclear fleet and meeting ambitious goals for carbon reductions, the country is actually poised to dig itself an even deeper hole, as the country is in the process of building 10 coal-fired power plants, which would add 11,311 MW to the country's installed capacity. These plants would emit 69.4Mt of C02 annually, over a quarter of the Germany electricity sector's 2008 total carbon dioxide emissions...



Click here--to see a list of articles and to subscribe to future posts or subscribe by email:

Enter your email address:


Delivered by FeedBurner

Sunday, April 10, 2011

Is it wise to exclude nuclear from the mix?


Click to enlarge

I borrowed the above image from another blogger, who borrowed it from another, who ...

This chart puts into perspective the magnitude of what we face. Now ask yourself, is wise to exclude a low carbon energy source like nuclear from the mix?

Look at those threads that represent wind and solar. To eliminate oil we need to greatly increase the electrification of transport, which means generating even more clean electricity. Note that most biomass goes to industry, which means that it is mostly the burning of waste wood chips at places like sawmills etc. The thread that branches off of that is corn ethanol and 70 percent of the energy in a gallon of corn ethanol comes from fossil fuels.

Think about it.

Sunday, February 28, 2010

Reframing Nuclear Power as an Ally of Renewable Energy



Photo courtesy of, ah, Bitchcakes via Flickr

Alec Baldwin weighs in, but which is better, coal or nuclear?

The official response to that question by most environmental organizations is to say "neither."

Neither? Are they privy to a secret consensus finding backed up by multiple, detailed, peer-reviewed, scientific studies which have demonstrated that when all negative and positive aspects of both methods of generating power are assessed they prove to be equally environmentally destructive in the aggregate?

Of course not. I'm being facetious. "Neither" isn't an answer; it's a dodge.

Let me start by presenting my environmental credentials so you can begin the subliminal mental process of stereotyping me and anticipating my bias. I have written many hundreds of articles over the years on environmental issues. I ride a nano-phosphate lithium-ion electric bicycle of my own design. I also own a Prius (Update 10/23/2011 ...and a Nissan Leaf). My neighborhood has one of the highest walkability scores in the country. I am a big proponent of solar power and will soon own a photovoltaic powered solar hot water system. I own eleven acres of forest property adjacent to a state forest that I am allowing to return to old growth. I wear sandals, with socks. I am also an experienced mechanical engineer.

OK, so now you have me pegged as some kind of bastardized chimera, a cross between a gear-head, flood-pants wearing, technology freak and a vegan, dreadlocked, tree hugger, which come to think of it may be closer to the truth than I want to believe ...

I also want to suggest at the start that this is mostly a thought exercise, not something to get bent out of shape over. I have little confidence that our political system (a reflection of we the people of the United States) has whatever it takes to reduce GHG emissions to the levels needed in the time frame allocated. We should already be converting coal power plants over to natural gas as an interim step to replace them entirely with carbon neutral sources. We are more than likely fooling ourselves.

According to the University of Wyoming education department:

The typical coal train is 100 to 110 cars long-a mile of coal! Each hopper car holds 100 tons of coal which lasts only 20 minutes fueling a power plant. Bigger surface mines may load two or three Unit Trains of coal a day. Currently, eighty trains leave Wyoming every day. In 1999 we shipped out 25,882 trains. That's 25,882 miles of coal-more than the circumference of the earth.
And here is a photo I lifted from their website:



Take all the time you need to understand the following colorful chart (click here to see all of it):



It's from a study commissioned by the Word Wildlife Fund. The researchers were asked to see if we could reduce our GHG emissions to the necessary levels in the allocated time frame without increasing use of nuclear power. Note that they did not get rid of nuclear power.

They managed to pull it off but just barely. They admitted that one of the solutions--pumping billions of tons of CO2 captured from burned fossil fuels underground--may not work. Giant bubbles of odorless, colorless, CO2 finding their way back to the surface to suffocate whole cities in the night would not be a good thing.

Their conclusion? We can do this if the entire world hits the ground running in the next four years and maximizes industrial output to create low carbon energy sources (sound of crickets chirping...).

Use your imagination to expand that thin purple band that represents nuclear power to make it as wide as the widest band shown. At the same time, decrease the width of all of the other bands by about four percent. What you will have is a scenario that is hardly impacted at all by greatly increasing nuclear power. My conclusion? We are "probably" hosed regardless.

Staring at that graph you should also be impressed, or maybe stunned, by how much has to be accomplished in such a short time.

Another problem with this analysis is that they also assume that the intermittent and highly diffused nature of wind and solar can be compensated for with more technology called a smart super-grid, which is at this time, an untested hypothesis.

I am fairly confident that to make renewables our main source of energy, we will still need some other power sources to help it (called baseline, provided today by coal and nuclear) as well as some power plants that can rapidly increase output when needed (called peaking power plants and today they are usually natural gas fired). I'll explain why later.

I am not about to argue that we should generate all of our power with conventional nuclear. I'm saying it would be much wiser to accept some additional conventional nuclear in the mix as needed to help bring more renewables on line (help defeat the real enemy--coal) while increasing R&D funding for designs that can reduce the impacts of existing problems, like limits on uranium fuel supply, waste, and safety. Instead of lumping nuclear with coal to make it look bad, we should be more realistic and honest by lumping it with zero carbon sources like wind and solar.

In an article called Miniature nuclear reactors might be a safe, efficient source of power, The Washington post describes how small reactors could be distributed and chained together as needed to power a given town or city, avoiding the loses associated with sending power long distances over power lines. Although the article didn't mention it, one could see how small reactors could also be strategically placed to make renewable energy more reliable and less expensive. A poll following that article shows that eighty percent of readers would favor nuclear power. Public opinion is shifting.

Nuclear power plants today are used for baseline power. However, some designs, like the Canadian CANDU reactors are capable of being used for peak power--more on this later.

Time frames and climate change aside, humanity needs to move away from fossil fuels because the supplies will all eventually peak and decline, making them more expensive and disruptive to economies long before they run out entirely. We heat our structures and fuel transport mostly with natural gas and oil. We are counting on electricity to take over most of those duties as well.

Without environmental groups there would be far fewer environmental safeguards, including nuclear ones. Environmentalism is a good thing but we don't always get it right. Growing plants to fuel our cars sure sounded like a great idea five years ago until we realized it was increasing the price of grains, helping to push the number of chronically malnourished to over a billion souls for the first time in all of human history. Not to mention researchers have proven what common sense would suggest, that to grow more plants you have to clear ecosystem carbon sinks, making crop-based biofuels gallon for gallon as bad or worse than fossil fuels although for slightly different reasons.

Some major (and a lot of minor) environmentalists are beginning to question the party line that nuclear is the devil incarnate. Understand, to belong to any given group you must, by definition, adhere to that group's belief system. It is not a matter of cowardice, its a simple matter of self-preservation and the classic group think dynamic called peer pressure. We know a lot more now than we did thirty years ago and many of the legitimate arguments used against nuclear in the past have lost some of their punch.

That freedom from the peer pressure may explain why a number of highly visible but independent environmental types (typically not immersed inside or strongly affiliated with--and therefore constrained by--a group) have begun publicly suggesting that nuclear power isn't such a bad thing after all: George Monbiot, Steward Brand, James Hansen, Steve Kirsch, and at least one highly visible environmental organization, the Union of Concerned Scientists.

Maybe we should stop with the knee-jerk hysterics every time nuclear power enters the discussion. It hurts our image. It reinforces the stereotype held by many that environmentalists are irrational, uncompromising, innumerates (the same stereotype often used to describe conservatives). That stance is starting to drive a wedge between other environmentalists who have less incentive to carry the anti-nuke banner. Yes, sometimes things we have clung to as absolute truths turn out to be bullshit. Happens all the time now that we have the internet.

On the other hand, there are also some independent (not beholden to a particular group) intellectual giants who still think nuclear power is the devil incarnate, which finally brings us to actor and 30-Rock (one of the best sitcoms ever produced IMHO) star Alec Baldwin.

The Huffington Post, one of the best on-line publications in existence, is no different from any other on-line publication in that (not being constrained by the physical size of a piece of paper) it will print pretty much anything any celebrity figure or any other prominent figure for that matter, wants to write. That's life in America. Articles are filtered less by quality of content than by who wrote them, regardless of qualifications or content. This tends to be true for books as well because profitability is directly proportional to celebrity status, regardless of what is in the book.

I am not going to parse the article here other than to say it's your classic anti-nuclear diatribe, including the standard conflation of nuclear power with nuclear weapons. In his next article he will:

" ...comment on last Saturday's broadcast of Weekend Edition on NPR and how Scott Simon appallingly allowed Stewart Brand to burble on and on with his outrageous pablum about "the new safe and clean nuclear power."

Here is an NPR interview with Alec on a different subject, which I suspect will go down in history.

From an environmental perspective it's not even close, especially in light of climate change. There's no contest. Nuclear power beats coal running away. Some of the old-guard environmentalists have gotten busy cobbling together new arguments against nuclear based on its economics in an attempt to bolster the flagging three-decade-old talking points.

The overarching fatal flaw in the argument that nuclear isn't cost competitive is that wind and solar are also not cost competitive. In both cases fossil fuels win the economic argument while losing the environmental one. As an aside, this explains in a nutshell the importance of getting a price on carbon.

The goal with renewable energy is to get the costs down in the future with mass production. However, a standardized and mass-produced design would also bring the cost of nuclear down as well, making the economic argument against nuclear as ephemeral as the one against renewables.

Also making the rounds is an answer to the question of "which is worse" that might be better defined as "a refusal to engage in debate disguised as an answer." It goes something like this:

"It’s a false dichotomy that lends legitimacy to a false scenario in which we as a region, country, or world are forced to chose coal or nukes and have no access to developing other energy sources. It is a worst-case, stuck-in-the-corner, fake match-up."

The coal vs. nuclear comparison is no more of a false dichotomy than coal vs. renewables. You can just as easily say that the match-up between coal and renewables is fake. It's an untested hypothesis that we can build a national super-grid capable of sending power from wherever the wind is blowing or the sun is shining to the far corners of the country without help from a 100% reliable form of (carbon free) backup power. In addition to the unknown technical feasibility, the cost of that super-grid is an unknown.

We know nuclear works. Nuclear would be a powerful ally of renewables in the battle against big coal. Nuclear could provide the stability needed by a national renewable smart energy grid. The power plants could be modular standardized designs to reduce cost and have less power output than the average plants of today, and strategically placed in areas of the mostly renewable grid to maintain stability.

Nuclear energy is not by any means a worst case scenario. It is a proven, safe, reliable way to generate energy. Sometimes you just have to use some common sense. Twenty percent of our power is coming from profitably run, safe, nuclear power plants that are just sitting there humming along 24 hours a day seven days a week. Japan, Germany, and Finland get almost a third of their power from them, Sweden and Switzerland almost half, and France gets about 75 percent.

All of the high-level waste that America's nuclear plants have generated since they started operating is just sitting in their parking lots waiting for our inept politicians to make a decision. There are several technically feasible options for dealing with that waste and quite obviously there is not that much of it or it could not all still be stored on site after decades of operation.

The main reason we don't have more nuclear power plants is because one-of-a-kind custom-designed reactors are no longer cost competitive with coal or natural gas, but as pointed out earlier, neither are renewables and unless you have a full array of photovoltaic and hot water panels installed on your roof providing you with all the electricity, hot water, and heat that you need (you have not put your money where your mouth is) your defense is already in trouble.

If nuclear power were cheaper than coal there would be no coal plants. You might not be able to say the same about renewables (regardless of cost) because nobody knows if a super grid could really give us the reliable supply needed.

The environmental camp splits into two main groups when it comes to solar. The distributed energy camp who think we should stick all of our solar panels on rooftops, and the concentrated solar power crowd who think we need large centralized power plants where the sun shines and a large sophisticated new grid to get it where it needs to go.

One of the warmest and fuzziest ideas found in some environmental camps is that we could finally stick it to the man by doing away with centralized power plants. I may be a big solar enthusiast but I'm also a realist.

Solar will be a mix of distributed and centralized, depending on which works best in a given locale. Solar panels on rooftops will be constrained by several factors. Seventy percent of our housing is built and most of it can't generate much solar because it was never designed with proper sloping, shadow-free roofs. But the biggest impediment to solar on rooftops will come from consumers who, given the choice, would rather have their power come from three wires than have to be responsible for the capital costs and maintenance of a power plant on their roof, especially when they need a new roof. The analogy would be a choice between a municipal sewer system or your own septic system, or possibly a choice between drilling and maintaining your own well and a municipal water supply.

Get up from your computer and go stare at your water heater for a minute. On average they sell for about $300 retail. They will never get much cheaper than that. Hot water heaters have reached their cost minimum. Now visualize a solar hot water system. Imagine the expense and complexity with its collectors, pumps, tanks, heat exchanger, and temperature switches. That system will always cost far more than a simple water heater (in part because it includes two water heater tanks) even after mass production has brought the cost of solar to its minimum. Given the choice, most people will opt for a simple electric water heater knowing full well that in the long run they may pay more in energy costs.

The arguments against nuclear

I knew this article was going to get too long. The nuclear issue is just too complex to put in a nutshell.

Let me start with some clarifications that might cut some strawman counter-arguments off at the knees. Until very recently I have agreed that there was no need to build more nuclear. We have gotten by for the last several decades without building more by using fossil fuels.

In hindsight you have to admit that coal has done tremendous damage in the form of lung disease, mercury poisoning, mine accidents, water pollution, acidified lakes, climate change, destroyed mountain top ecosystems and buried mountain valley ecosystems and on and on it goes. There is an endless stream of train cars loaded with coal arriving at these power plants with other train cars hauling off the burned waste products. Hauling this coal is the biggest profit maker for railroad companies.

Nuclear was held at bay primarily by its cost restraints and there would not have been many more new plants built protests or no protests. Many projects were canceled after construction started thanks to the combination of cost overruns and really stupid energy demand predictions. As I said earlier, if nuclear were cheaper than coal, there would be no coal, protests or no protests.

I repeat, I am not arguing that we should generate all of our power with conventional nuclear. I'm saying it would be much wiser to accept some additional conventional nuclear in the mix as needed to help bring more renewables on line (help defeat the real enemy--coal) while increasing R&D funding for designs that can reduce the impacts of existing problems, like limits on uranium fuel supply, waste, safety, and proliferation.

I suspect that America has already lost the ability to design and build its own affordable nuclear power plants. If we want more of them, we will probably have to buy tried and true designs as well as expertise from others. Lots of engineering firms here would love to be given tax dollars to learn how to build custom designs again for a government with a bottomless ability to borrow money, but that is guaranteed to drive costs into the stratosphere. We always have to guard against pork politics spoiling it for everyone.

Waste

As mentioned earlier, the high-level waste generated by our nuclear power plants since the day they started operating is just sitting there in their own parking lots waiting for our government to make decisions--proof positive that they don't generate large amounts of waste (and that our government is largely incompetent). By law, nuclear power plants have to pay the government a set amount per unit of power generated to fund a permanent waste storage solution. Our government is then supposed to use that money to find that solution. Yucca Mountain ate a pile of that money before being shit-canned. I rest my case. The waste issue is largely political, not so much technical.



Most countries reprocess their used nuclear fuel. The United States plans to simply store used fuel in a place like Yucca mountain (but not Yucca mountain). According to the World Nuclear Association, it is reprocessed mainly to extract the unused fuel left over (about 25%) and to reduce the amount of the more problematic high-level waste that has to be stored (by about four-fifths). Reprocessing tends to increase the amount of low-level waste, which is not as dangerous or long-lived (loses its radioactivity much faster).

Again, according to the WNA, after reprocessing, all of the "high-level" waste generated to provide a typical European with all of her electricity for her entire life could be held in the palm of her hand--make that both hands for an American.

Puget Sound, the Gulf of Mexico dead zone, along with various and sundry rivers, lakes, and aquifers all over this country have been compromised by pollution from agriculture, landfills, industry, and sewage. Our landfills are chock-full of deadly toxins like PCBs and heavy metals that are separated from ground water by a thin layer of clay and a plastic liner. Nuclear waste is put into high-strength metal containers and will one day be sequestered thousands of feet underground far away from aquifers and fault lines in bone-dry caverns and salt mines that have been geologically stable for millions of years.

The guy who suggested shooting waste into space should be made into a saint. We would call him the "Saint of a total lack of any semblance of common sense."

Note that anti-nuclear proponents will invariably talk about waste produced by nuclear weapons manufacturing and the abysmal government track record for dealing with it in the same article they discuss nuclear power. Although the two have little in common, this is done to shine a bad light on nuclear power by association--the same tactic is at play when associating nuclear power with coal.

Most nuclear fuel today actually comes form dismantled nuclear weapons. This is a case of turning swords to ploughshares writ large.

A concerted effort is being made to design some kind of long-lived warning sign to be used at nuclear waste sites to warn future generations that something bad is buried about half-a-mile below their feet.

It has been suggested that hundreds or thousands of years from now, our ancestors are either going to be so technologically advanced that they will be humored by our concerns or they will be hunter-gatherers unable to tunnel thousands of feet down to satisfy their curiosity even though we have pinpointed for them exactly where to dig (more potential candidates for that sainthood). And if I'm wrong and somebody digs that far down in the middle of nowhere to see what is going on, they won't be doing it again. That's one hole that will be back-filled in a hurry.

Proliferation

One idea to prevent people from creating weapons grade nuclear material from their nuclear fuel processing is to have all that done by existing nuclear powers. Iran exposed the idea's weakness by declining the offer. Clearly they want to make a nuclear bomb.

Building a nuclear weapon takes tremendous resources and advanced technology. A rag-tag gang of fundamentalist religionist freaks may be stupid enough to use a nuclear weapon but they are not smart enough to build a nuclear weapon. That takes the resources of a national economy.

Our dearth of new nuclear power plants has had no impact on North Korea or Iran. Solutions to the problem of nuclear proliferation, whatever they are, have little if anything to do with the number of nuclear power plants in America.

Uranium supply

It will one day peak and decline like fossil fuels. The timing of this eventuality would depend on how many nuclear power plants there are.

Another popular argument used against nuclear is to point out that we would have to build about a bazillion of them a day for the next hundred years to meet all of our energy needs.

But that is not what I'm suggesting. I'm suggesting we use them judiciously as needed to shore up a renewable grid.

In addition, there is truly a reasonable chance that nuclear technologies presently in development will neutralize the uranium supply issue by using other sources, including our own stored waste.

I am aware of the weakness of the "use existing technology as a bridge to future technology" argument. If that technology never arrives you are stuck with what you got. But that does not mean we should not use nuclear to promote the success of renewables. If improved nuclear technology that minimizes existing problems never comes to fruition, at least we will have bought time and produced power that was carbon free all that time.

Cost

I'm going to ask you to use your imagination again. Pretend you are in orbit looking down at the US of A with a special camera that only sees electricity. Through the lightning flashes you see spread out across the country a complex web with glowing blobs that represent power plants.

That is our power grid. It acts like a single circuit board. Some components in a complex circuit board are more expensive than others. A high voltage diode may cost more than a cheap resistor but if you want that circuit board to work more efficiently, you may have to include a few of the more expensive parts to make the overall circuit board less expensive than a design using cheaper parts but requiring a lot more of them.

Nuclear power plants should not be viewed by themselves. They should be viewed as parts in a circuit board that make it more efficient and therefore less expensive overall.

I've talked a lot about cost already but I'll add some thoughts here. I live in Seattle so the Washington Public Power Supply System (WPPSS) debacle hit close to home. This analysis looks at why the cost of building a nuclear power plant went ballistic.

As I've pointed out before, renewables are also not cost competitive but the hope is that they will be someday. The Canadian designed CANDU reactor is an example of how you can lower costs by tweaking designs. And we all know that standardization and mass production, coupled with learning curves can have dramatic impacts on costs.

I saw the power of learning curves first hand as lead engineer on the Boeing 777 wing in-spar shear structure (that's a mouthful). One of my duties was to develop a standard procedure to make three dimensional Boolean solid models of these incredibly complex machined parts such that numerically controlled machines could be used to cut them out of blocks of metal.

It took a week to model the first part. By the end of the program it took three hours by simply climbing up a learning curve.

Giant custom designed from scratch nuclear reactors here in America are not cost effective. We may never build another one but that does not mean we won't be able to build standardized modular designs that are not too expensive.

You can document what you paid or were paid but you cannot predict very far into the future what something will cost. Cost is whatever you ended up paying and that is all anything is worth. Cost is a moving target.

Chernobyl in perspective and in hindsight

The closest you will get to the truth can be found in a book called Wormwood Forest by Mary Mycio.

Did you know that the Chernobyl nuclear power plant continued to operate for 14 years after the accident?

A lot of the anti-nuclear fervor seen today stems from the Chernobyl disaster. Shortly after the incident sensationalist photos of deformed children began to circulate (that turned out to have nothing to do with Chernobyl). We were expecting to see mutants emerge from the woods and an epidemic of cancers.

Over 43 thousand people were killed ...in auto accidents in the United States last year. Less than 60 people have died as a result of the Chernobyl disaster, including nine people from thyroid cancer who were children at the time and in the path of the fallout.

Roughly 4,000 cases of thyroid cancer (which has a cure rate of about 97%) have been detected and treated in people who were children at the time of the disaster.

Studies have not detected higher rates of cancers or birth defects in the population of people who were hired to clean up the radiation.

The "dead zone" has become rich with wildlife including many rare species that have either returned on their own or have been reintroduced: Lynx, Wild Boar, Wolf, Eurasian Brown Bear, European Bison, Przewalski's horse and Eagle Owl.

It turns out that high levels of radiation are far less detrimental to wildlife than high levels of human beings.

Click here--to see a list of articles and to subscribe to future posts or subscribe by email:

Enter your email address:

Delivered by FeedBurner